Coenzyme Q10

Common Names
- Ubiquinone
- Ubidecarenone
- Ubiquinol
- CoQ
- CoQ10
- How It Works
Coenzyme Q10 has not been shown to treat or prevent cancer.
Coenzyme Q10 (CoQ10) is produced naturally by all cells in the body. It is necessary for production of adenosine triphosphate (ATP), the “fuel” of all living cells. In episodes where a lack of oxygen occurs such as during a heart attack, CoQ10 was shown to reduce damage to heart tissue and its mitochondria, where ATP production takes place. It is known to be an antioxidant and to stabilize cell and organelle membranes. In animal studies, coenzyme Q10 neutralized free radicals, which can damage DNA and cells. However, absorption of oral coenzyme Q10 through the intestine is low.
Due to its antioxidant activity, CoQ10 may interfere with the actions of certain chemotherapy drugs and radiation therapy.
- Purported Uses
- As an antioxidant
Laboratory studies show that CoQ10 has antioxidant effects. - To treat breast cancer
A few older case reports describe remission of breast cancer when treated with high doses of CoQ10, but this is insufficient evidence to support this use. - To manage cardiovascular disease
Several studies show CoQ10 improves left ventricular function and reduces hypertension. Other studies yielded negative results. - To reduce high cholesterol
Clinical trials show inconsistent results: some indicate an increase in HDL, one showed a decrease in LDL. Other studies suggest no effect on LDL oxidation, which contributes to the development of plaque in blood vessels. - To reduce fatigue
Studies on whether CoQ10 supplementation can help reduce fatigue are mixed. - To prevent the progression of Parkinson’s disease
One clinical trial showed that high doses of CoQ10 slowed the progression of Parkinson’s disease, but larger clinical trials are needed to support this use. - To treat Huntington’s disease
A large multicenter trial did not find benefit with CoQ10 supplementation. - To treat infertility
Coenzyme Q10 improved sperm motility, but it is not known if it can be used to treat infertility.
- As an antioxidant
- Do Not Take If
- You are taking warfarin: CoQ10 may alter its effects and increase bleeding risk.
- You are undergoing chemotherapy or radiation therapy: Theoretically because it is an antioxidant, CoQ10 may decrease effectiveness of these cancer treatments. Patients should consult with their oncologist.
- You are taking theophylline: CoQ delays theophylline clearance, which may cause persistent vomiting, cardiac arrhythmias, and intractable seizures.
- Side Effects
- Nausea
- Diarrhea
- Loss of appetite
- Special Point
A study in mice showed that high intakes of CoQ10 reduced effectiveness of radiation therapy against non-small cell lung cancer. Patients considering use of CoQ10 during radiation therapy should consult with their physician.
- Brand Name
UbiQgel™
- Scientific Name
2,3 dimethoxy-5 methyl-6-decaprenyl benzoquinone
- Clinical Summary
Coenzyme Q10 (CoQ10), also known as ubiquinone, is involved in cellular respiration and energy production. It is found in all human cells, with higher concentrations found in the liver, kidney, heart, and pancreas. It is also consumed as a dietary supplement for its antioxidant effects and is often promoted as a preventive agent for cardiovascular diseases, Parkinson’s disease, infertility, and cancer. Studies using murine models suggest antioxidant and neuroprotective effects (17) (18), and the potential to alleviate radiation-induced nephropathy (34).
Data from some human studies suggest CoQ10 may benefit patients with coronary artery disease (2) and congestive heart failure (21), and reduce risk of cardiovascular mortality (46). In a long-term trial, dietary supplementation with a combination of selenium and CoQ10 also improved cardiac function and significantly reduced mortality (43) (47). However, a systematic review concluded that current evidence does not support routine CoQ10 supplementation in patients with coronary heart disease (42).
Observations that patients on statins have decreased CoQ10 concentrations in muscle cells (25) resulted in efforts to evaluate CoQ10 for statin-induced myalgias, but data are inconclusive (26) (27) (28) (45). Short-term CoQ10 supplementation in diabetic hemodialysis patients improved markers of insulin metabolism, but not fasting glucose, HbA1c, or lipid profiles (48). A meta-analysis concluded that evidence of benefit for diabetic kidney disease is limited and that additional study is needed (49).
CoQ10 may be helpful in some cases for migraine prevention (22). A small study found reduced migraine frequency following supplementation (23), and other data suggest it may reduce number of migraine days and duration, but not number of attacks or severity (50). A randomized trial of add-on supplementation in pediatric migraine failed to find benefit (24).
In other studies, adjuvant CoQ10 improved depressive symptoms in patients with bipolar disorder (44), but an antioxidant mixture including CoQ10, vitamins C and E, and lipoic acid was ineffective against Alzheimer’s disease (20). Neuroprotective effects were reported in patients with progressive supranuclear palsy (5) and those with early (6) (33) but not mid-stage (7) Parkinson’s disease. Case reports also suggest CoQ10 supplementation improves postural hypotension, a hallmark of multiple-system atrophy (36). However, a large multicenter trial found CoQ supplementation ineffective in slowing functional decline of Huntington’s disease (51).
Other data suggest CoQ10 supplementation may increase sperm motility in men (8), modulate expression of insulin, lipid, and inflammatory markers in women with polycystic ovary syndrome (35), and reduce fatigue from physical exertion (9).
CoQ10 has also been investigated for anticancer effects. In patients with hepatocellular carcinoma, coenzyme Q10 levels were positively associated with antioxidant capacity and negatively correlated with inflammation markers post-surgery (37). In breast cancer patients, a combination of CoQ10 and L-carnitine helped control cancer-related fatigue (38). Older case reports suggest supplementation may be useful for treating the cancer (3) (4), although a randomized trial found no benefit against self-reported fatigue or quality of life (29). Further research is needed (39).
CoQ10 may interfere with the actions of warfarin (11) (12). Because of its antioxidant properties, it may also reduce effectiveness of chemotherapy and radiation therapy (13).
- Purported Uses
- Cancer prevention
- Cardiovascular disease
- Chemotherapy side effects
- HIV and AIDS
- Hypertension
- Infertility
- Migraine prophylaxis
- Parkinson’s disease
- Strength and stamina
- Mechanism of Action
CoQ10 is known to have antioxidant and membrane-stabilizing properties and is the only endogenously produced lipid with a redox function in mammals. All cells are capable of synthesizing CoQ10 and no redistribution between organs occurs through the blood. It is necessary for adenosine triphosphate (ATP) production, and its role as a mobile electron carrier in the mitochondrial electron-transfer processes of respiration and coupled phosphorylation is well established. It also has a direct regulatory role on succinyl and NADH dehydrogenases (1). CoQ10 has been shown to scavenge free radicals produced by lipid peroxidation and prevent mitochondrial deformity during ischemic episodes, and may help maintain integrity of myocardial calcium ion channels during ischemic insults (2). CoQ10 may also stabilize cellular membranes and prevent depletion of metabolites required for ATP resynthesis (10), and suppress age-related inflammatory reactions and osteoclast differentiation by inhibiting oxidative stress (30). One of the mechanisms underlying the neuroprotective effects of CoQ10 involves inhibition of microglia in pentylenetetrazol-induced kindling epilepsy in mice (40).
Other preclinical studies suggest CoQ10 can prevent reduced glucose transporter-4 protein levels in adipocytes caused by simvastatin, which may contribute to the risk of new-onset diabetes in statin patients (31). It also reduced high glucose-induced apoptosis and dysfunction of endothelial progenitor cells by upregulating endothelial nitric oxide synthase and heme oxygenase via the AMP-activated protein kinase pathway (41). In a murine model, it protected against doxorubicin-induced testicular toxicity by ameliorating oxidative stress, reducing apoptosis, and upregulating testicular P-glycoprotein (32).
- Contraindications
In a murine model of non-small cell lung cancer, ubiquinone intake appeared to reduce the effects of radiation therapy (13).
- Adverse Reactions
Infrequent: Nausea, diarrhea, and appetite suppression (11)
- Herb-Drug Interactions
HMG-CoA reductase inhibitors: Endogenous levels of CoQ10 may be reduced by lovastatin, atorvastatin and simvastatin. The HMG-CoA reductase enzyme is responsible for catalyzing the conversion of acetyl CoA to cholesterol and synthesis of CoQ10 (14).
Warfarin: CoQ10 is structurally similar to vitamin K and may antagonize the effects of warfarin (11). However, there are reports that CoQ10 can increase the risk of bleeding when used with warfarin (12).
Theophylline: CoQ10 delays theophylline clearance, which can cause persistent vomiting, cardiac arrhythmias, and intractable seizures (19). - References
Greenberg S, Frishman WH. Co-enzyme Q10: a new drug for cardiovascular disease. J Clin Pharmacol 1990;30:596-608.
Tiano L, Belardinelli R, Carnevali P, Principi F, Seddaiu G, Littarru GP. Effect of coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischaemic heart disease: a double-blind, randomized controlled study. Eur Heart J. Sep 2007;28(18):2249-2255.
Lockwood K, et al. Partial and complete regression of breast cancer in patients in relation to dosage of coenzyme Q10. Biochem Biophys Res Comm 1994;199:1504-8.
Lockwood K, et al. Progress on therapy of breast cancer with vitamin Q10 and the regression of metastasis. Biochem Biophys Res Comm 1995;212:172-7.
Stamelou M, Reuss A, Pilatus U, et al. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord. May 15 2008;23(7):942-949.
Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease. Arch Neurol 1998;4:505-6.
Storch A, Jost WH, Vieregge P, et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol. Jul 2007;64(7):938-944.
Balercia G, Buldreghini E, Vignini A, et al. Coenzyme Q(10) treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. Fertil Steril. 2009 May;91(5):1785-92.
Mizuno K, Tanaka M, Nozaki S, et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. Apr 2008;24(4):293-299.
Dallner G, Sindelar PJ. Regulation of ubiquinone metabolism. Free Radic Biol Med 2000;29:285-94.
Shalansky S, Lynd L, Richardson K, et al. Risk of warfarin-related bleeding events and supratherapeutic international normalized ratios associated with complementary and alternative medicine: a longitudinal analysis. Pharmacotherapy 2007;27(9):1237-47.
Lund EL, Quistorff B, Spang-Thomsen M, Kristjansen PE. Effect of radiation therapy on small-cell lung cancer is reduced by ubiquinone intake. Folia Microbiol 1998;4:505-6.
Khatta M, Alexander BS, Krichten CM, et al. The effect of coenzyme Q10 in patients with congestive heart failure. Ann Intern Med 2000;132:636-40.
Watson PS, Scalia GM, Galbraith A, et al. Lack of effect of coenzyme Q on left ventricular function in patients with congestive heart failure. J Am Coll Cardiol 1999;33:1549-52.
Kalayci M, Unal MM, Gul S, et al. The effect of Coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain injury model in rats. BMC Neurosci. 2011 Jul 29;12(1):75.
Dumont M, Kipiani K, Yu F, et al. Coenzyme Q10 Decreases Amyloid Pathology and Improves Behavior in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis. 2011;27(1):211-23.
Baskaran R, Shanmugam S, Nagayya-Sriraman S, et al. The effect of coenzyme Q10 on the pharmacokinetic parameters of theophylline. Arch Pharm Res. 2008 Jul;31(7):938-44.
Galasko DR, Peskind E, Clark CM, et al; for the Alzheimer’s Disease Cooperative Study. Antioxidants for Alzheimer Disease: A Randomized Clinical Trial With Cerebrospinal Fluid Biomarker Measures. Arch Neurol. 2012 Jul;69(7):836-41.
Fotino AD, Thompson-Paul AM, Bazzano LA. Effect of coenzyme Q10 supplementation on heart failure: a meta-analysis. Am J Clin Nutr. 2013 Feb;97(2):268-75.
Hershey AD, Powers SW, Vockell AL, et al. Coenzyme Q10 deficiency and response to supplementation in pediatric and adolescent migraine. Headache. 2007 Jan;47(1):73-80.
Rozen TD, Oshinsky ML, Gebeline CA, et al. Open label trial of coenzyme Q10 as a migraine preventive. Cephalalgia. 2002 Mar;22(2):137-41.
Slater SK, Nelson TD, Kabbouche MA, et al. A randomized, double-blinded, placebo-controlled, crossover, add-on study of CoEnzyme Q10 in the prevention of pediatric and adolescent migraine. Cephalalgia. 2011 Jun;31(8):897-905.
Mabuchi H, Nohara A, Kobayashi J, et al. Effects of CoQ10 supplementation on plasma lipoprotein lipid, CoQ10 and liver and muscle enzyme levels in hypercholesterolemic patients treated with atorvastatin: a randomized double-blind study. Atherosclerosis. 2007 Dec;195(2):e182-9.
Bookstaver DA, Burkhalter NA, Hatzigeorgiou C. Effect of coenzyme Q10 supplementation on statin-induced myalgias. Am J Cardiol. 2012 Aug 15;110(4):526-9.
Bogsrud MP, Langslet G, Ose L, et al. No effect of combined coenzyme Q10 and selenium supplementation on atorvastatin-induced myopathy. Scand Cardiovasc J. 2013 Apr;47(2):80-7.
Fedacko J, Pella D, Fedackova P, et al. Coenzyme Q(10) and selenium in statin-associated myopathy treatment. Can J Physiol Pharmacol. 2013 Feb;91(2):165-70.
Lesser GJ, Case D, Stark N, et al. A randomized, double-blind, placebo-controlled study of oral coenzyme Q10 to relieve self-reported treatment-related fatigue in newly diagnosed patients with breast cancer. J Support Oncol. 2013 Mar;11(1):31-42.
Yoneda T, Tomofuji T, Ekuni D, et al. Anti-aging effects of co-enzyme Q10 on periodontal tissues. J Dent Res. 2013 Aug;92(8):735-9.
Ganesan S, Ito MK. Coenzyme Q10 ameliorates the reduction in GLUT4 transporter expression induced by simvastatin in 3T3-L1 adipocytes. Metab Syndr Relat Disord. 2013 Aug;11(4):251-5.
El-Sheikh AA, Morsy MA, Mahmoud MM, Rifaai RA. Protective mechanisms of coenzyme-Q10 may involve up-regulation of testicular P-glycoprotein in doxorubicin-induced toxicity. Environ Toxicol Pharmacol. 2014 Feb 19;37(2):772-781.
Seet RC1, Lim EC, Tan JJ, et al. Does high-dose coenzyme Q10 improve oxidative damage and clinical outcomes in Parkinson’s disease? Antioxid Redox Signal. 2014 Jul 10;21(2):211-7.
Ki Y, Kim W, Kim YH, et al. Effect of Coenzyme Q10 on Radiation Nephropathy in Rats. J Korean Med Sci. 2017 May;32(5):757-763.
Rahmani E, Jamilian M, Samimi M, et al. The effects of coenzyme Q10 supplementation on gene expression related to insulin, lipid and inflammation in patients with polycystic ovary syndrome. Gynecol Endocrinol. 2017 Sep 26:1-6.
Rembold CM. Coenzyme Q10 Supplementation in Orthostatic Hypotension and Multiple-System Atrophy: A Report on 7 Cases. Am J Med. 2017 Dec 11. pii: S0002-9343(17)31097-5.
Liu HT, Cheng SB, Huang YC, Huang YT, Lin PT. Coenzyme Q10 and Oxidative Stress: Inflammation Status in Hepatocellular Carcinoma Patients after Surgery. Nutrients. 2017 Jan 4;9(1). pii: E29.
Iwase S, Kawaguchi T, Yotsumoto D, et al. Efficacy and safety of an amino acid jelly containing coenzyme Q10 and L-carnitine in controlling fatigue in breast cancer patients receiving chemotherapy: a multi-institutional, randomized, exploratory trial (JORTC-CAM01). Support Care Cancer. 2016 Feb;24(2):637-646.
Tafazoli A. Coenzyme Q10 in breast cancer care. Future Oncol. 2017 May;13(11):1035-1041
Bhardwaj M, Kumar A. Neuroprotective mechanism of Coenzyme Q10 (CoQ10) against PTZ induced kindling and associated cognitive dysfunction: Possible role of microglia inhibition. Pharmacol Rep. 2016 Dec;68(6):1301-1311.
Tsai HY, Lin CP, Huang PH, et al. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways. J Diabetes Res. 2016;2016:6384759.
Ayers J, Cook J, Koenig RA, Sisson EM, Dixon DL. Recent Developments in the Role of Coenzyme Q10 for Coronary Heart Disease: a Systematic Review. Curr Atheroscler Rep. 2018 May 16;20(6):29.
Alehagen U, Aaseth J, Alexander J, Johansson P. Still reduced cardiovascular mortality 12 years after supplementation with selenium and coenzyme Q10 for four years: A validation of previous 10-year follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly. PLoS One. 2018 Apr 11;13(4):e0193120.
Mehrpooya M, Yasrebifar F, Haghighi M, Mohammadi Y, Jahangard L. Evaluating the Effect of Coenzyme Q10 Augmentation on Treatment of Bipolar Depression: A Double-Blind Controlled Clinical Trial. J Clin Psychopharmacol. 2018 Oct;38(5):460-466.
Qu H, Guo M, Chai H, et al. Effects of Coenzyme Q10 on Statin-Induced Myopathy: An Updated Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2018 Oct 2;7(19):e009835.
Mortensen SA, Rosenfeldt F, Kumar A, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. Dec 2014;2(6):641-649.
Alehagen U, Johansson P, Bjornstedt M, et al. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int J Cardiol. Sep 1 2013;167(5):1860-1866.
Fallah M, Askari G, Soleimani A, et al. Clinical trial of the effects of coenzyme Q10 supplementation on glycemic control and markers of lipid profiles in diabetic hemodialysis patients. Int Urol Nephrol. Nov 2018;50(11):2073-2079.
Zhang X, Shi Z, Liu Q, et al. Effects of coenzyme Q10 intervention on diabetic kidney disease: A systematic review and meta-analysis. Medicine (Baltimore). Jun 2019;98(24):e15850.
Zeng Z, Li Y, Lu S, et al. Efficacy of CoQ10 as supplementation for migraine: A meta-analysis. Acta Neurol Scand. Mar 2019;139(3):284-293.
McGarry A, McDermott M, Kieburtz K, et al. A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology. Jan 10 2017;88(2):152-159.